En klockkurva (även känd som normal distributionskurva) är ett sätt att plotta och analysera data som ser ut som en klockkurva.
I klockkurvan är den högsta punkten den som har störst sannolikhet att inträffa, och sannolikheten för händelser går ner på vardera sidan av kurvan.
Det används ofta under medarbetarnas prestationsbedömningar eller vid utvärdering vid tentamen (någonsin hört - "Kommer du att betygsättas på kurvan?").
Nu innan jag hoppar in hur jag skapar en klockkurva i Excel, låt oss få en bättre förståelse av konceptet genom att ta ett exempel.
Förstå Bell Curve
Antag att du arbetar i ett team med 100 medlemmar och att din chef berättar att din prestation kommer att vara relativt andra och kommer att utvärderas på bellkurvan.
Det betyder att även om ditt lag är det bästa laget någonsin och ni alla är superhjältar, skulle bara en handfull av er få högsta betyg, de flesta i ditt lag skulle få ett genomsnittligt betyg och en handfull får det lägsta betyg.
Bildkälla: EmpxTrack
Men varför behöver vi klockkurvan?
Rättvis fråga!
Antag att du har en klass på 100 studenter som dyker upp för en tentamen. Enligt ditt betygssystem får alla som får över 80 av 100 ett A -betyg. Men eftersom du satte ett riktigt enkelt papper fick alla över 80 och fick A -betyget.
Nu är det inget fel i den här typen av betygssystem. Men om du använder det kan du inte skilja mellan någon som fick 81 och någon som fick 95 (eftersom båda skulle få A -betyget).
För att hålla jämförelsen rättvis och hålla tävlingsandan vid liv används ofta en klockkurva för att utvärdera prestationer (åtminstone så var det när jag var på college).
Med hjälp av klockkurvmetoden konverteras elevernas betyg till percentiler som sedan jämförs med varandra.
Elever som får högre betyg är på höger sida av kurvan och elever som får låga betyg är till vänster om kurvan (med de flesta eleverna i mitten runt medelvärdet).
Nu för att förstå klockkurvan måste du veta om två mätvärden:
- Betyda - medelvärdet för alla datapunkter
- Standardavvikelse - det visar hur mycket datamängden avviker från datamängden. Anta till exempel att du har en grupp på 50 personer och att du registrerar deras vikt (i kg). I denna datamängd är medelvikten 60 kg och standardavvikelsen är 4 kg. Det betyder att 68% av människans vikt ligger inom 1 standardavvikelse från medelvärdet - vilket skulle vara 56-64 kg. På samma sätt är 95% av människorna inom 2 standardavvikelser - vilket skulle vara 52-68 kg.
När du har en datauppsättning som normalt distribueras följer din klockkurva nedanstående regler:
- Klockkurvens centrum är medelvärdet för datapunkten (också den högsta punkten i klockkurvan).
- 68,2% av de totala datapunkterna ligger inom intervallet (medelvärde - standardavvikelse till medelvärde + standardavvikelse).
- 95,5% av de totala datapunkterna ligger inom intervallet (medelvärde - 2*standardavvikelse till medelvärde + 2*standardavvikelse)
- 99,7% av de totala datapunkterna ligger inom intervallet (medelvärde - 3*standardavvikelse till medelvärde + 3*standardavvikelse)
Bildkälla: MIT News
Låt oss nu se hur du skapar en klockkurva i Excel.
Skapa en Bell Curve i Excel
Låt oss ta ett exempel på en klass elever som har fått poäng i ett prov.
Den genomsnittliga poängen för klassen är 65 och standardavvikelsen är 10. (Du kan beräkna medelvärdet med hjälp av AVERAGE -funktionen i Excel och standardavvikelse med funktionen STDEV.P).
Här är stegen för att skapa en klockkurva för denna dataset:
- I cell A1 anger du 35. Detta värde kan beräknas med Medelvärde - 3* standardavvikelse (65-3*10).
- I cellen nedan anger du 36 och skapar en serie från 35 till 95 (där 95 är medelvärde + 3* standardavvikelse). Du kan göra detta snabbt genom att använda alternativet autofyll, eller använda fyllhandtaget och dra nedåt för att fylla cellerna.
- I cellen intill 35 anger du formeln: = NORM.DIST (A1,65,10, FALSE)
- Observera att här har jag hårdkodat värdet av medelvärde och standardavvikelse. Du kan också ha dessa i celler och använda cellreferenser i formeln.
- Observera att här har jag hårdkodat värdet av medelvärde och standardavvikelse. Du kan också ha dessa i celler och använda cellreferenser i formeln.
- Återigen använder du fyllhandtaget för att snabbt kopiera och klistra in formeln för alla celler.
- Välj datauppsättningen och gå till fliken Infoga.
- Sätt in diagrammet "Scatter with Smooth Lines".
Detta ger dig en klockkurva i Excel.
Nu kan du ändra diagramtiteln och justera axeln om du behöver.
Observera att när du har en låg standardavvikelse får du en packad smal klockkurva, och när du har en hög standardavvikelse är klockkurvan bred och täcker mer område på diagrammet.
Denna typ av klockkurva kan användas för att identifiera var en datapunkt ligger i diagrammet. Till exempel, om ett lag är fullt av högpresterande, när det utvärderas på en kurva, trots att det är ett högpresterande, kan någon få ett genomsnittligt betyg eftersom han/hon var mitt i kurvan.
Obs! I det här blogginlägget har jag diskuterat konceptet med en klockkurva och hur man skapar det i Excel. En statistiker skulle vara bättre lämpad att tala om effektiviteten hos klockkurvan och begränsningar som är förknippade med den. Jag är mer en Excel -kille och mitt engagemang med Bell curve har begränsats till de beräkningar jag gjorde när jag arbetade som finansanalytiker.
Hoppas du tyckte att denna handledning var användbar!
Låt mig veta dina tankar i kommentarsfältet.
Du kanske också gillar följande Excel -självstudier:
- Hur man gör ett histogram i Excel.
- Hur man beräknar sammansatt ränta i Excel + GRATIS kalkylator.
- Hur man skapar en värmekarta i Excel.
- Stegdiagram i Excel.
- Hur man skapar en tidslinje / milstolpsdiagram i Excel.
- Skapa ett Pareto -diagram i Excel.
- Skapa ett cirkeldiagram i Excel
- Avancerade Excel -diagram
- Hur hittar jag lutning i Excel? Använda formel och diagram